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Alcohol Intoxication May Exacerbate the
Effects of Blunt Cranial Trauma Through
Changes in Brain Free Magnesium Levels

ABSTRACT: Moderate to high levels of alcohol decrease brain intracellular free magnesium concentration, a factor known to be critical in brain
injury. Phosphorus magnetic resonance spectroscopy was used to examine changes to brain free magnesium concentration after blunt cranial trauma
in alcohol-intoxicated rats. Rats exposed acutely or chronically to alcohol sufficient to increase blood alcohol levels to between 150 and 350 mg ⁄ dL
demonstrated a brain free magnesium level that was 20–50% less than in nonintoxicated animals (p < 0.01). After injury, brain free magnesium lev-
els declined more rapidly and to a greater extent in alcohol-affected animals than in nonintoxicated control animals (p < 0.001). As both preinjury
depletion of magnesium and degree of magnesium decline after brain injury have been associated with poor recovery, these findings suggest that
moderate to severe alcohol intoxication may predispose the brain to a worse outcome by reducing brain free magnesium levels, both before and after
injury.
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Our understanding of the pathogenesis and manifestations of
many aspects of blunt cranial trauma is incomplete. Debate occurs
around a wide range of topics including the speed with which brain
swelling may develop after impact, the possible significance of the
so-called ‘‘second impact syndrome,’’ and the relationship of hyp-
oxic brain damage to the development of subdural hemorrhage in
infants (1–3). Another issue that arises in forensic practice concerns
the effect of high levels of alcohol on the response to cerebral
trauma. The effects of alcohol intoxication on outcome after blunt
cranial trauma are unclear, with some reports suggesting that a low
blood alcohol concentration may be beneficial through attenuation
of posttraumatic injury factors (4), while others have suggested that
higher alcohol levels may result in a more severe clinical outcome
or even death (5–7). The significance of the latter hypothesis is
clear; that is, if high levels of alcohol act synergistically with blunt
trauma, then a far worse outcome may follow less severe impact.
Proposed mechanisms have centered around interference with
brainstem cardiorespiratory centers with depressed respiratory drive,
impaired hemodynamic response with reduced cerebral perfusion,
and elevation of brain and cerebral venous blood lactate levels
(5,6,8–11); however, little work has been carried out on possible
underlying biochemical changes.

A reduction in free magnesium levels within the brain and a
depressed bioenergetic state have been associated with the develop-
ment of neurological deficits following blunt cranial trauma in ani-
mals (12–14). In addition, preinjury depletion of magnesium has
been shown to exacerbate injury (15), with attenuation of these
electrolyte changes being neuroprotective in terms of motor and

cognitive outcome (16). Recent studies have demonstrated that
acute doses of alcohol administered to rats will also cause a
decrease in brain magnesium and a depressed bioenergetic state
(17,18). The similarity of these responses raises the possibility that
there may be a relationship between the decline in magnesium fol-
lowing brain trauma and that following alcohol exposure, thus pro-
viding a potential mechanism for an exacerbation of injury.

In the following paper, a death owing to blunt cranial trauma is
reported to illustrate features of a typical case where high levels of
alcohol were considered to have played a role in the lethal out-
come. In addition, to further investigate possible underlying mecha-
nisms, a study was undertaken to examine the effects of acute and
chronic alcohol exposure on brain magnesium following closed cra-
nial trauma in an animal model. Phosphorus magnetic resonance
spectroscopy (MRS) was used to noninvasively measure brain intra-
cellular magnesium levels prior to, and following, brain trauma,
with prior acute or chronic exposure to alcohol.

Materials and Methods

A case of lethal head trauma associated with an elevated blood
alcohol level was taken from the files of Forensic Science SA,
Adelaide, Australia.

Animal studies were conducted according to the National Health
and Medical Research Council (Australia) guidelines for the use of
laboratory animals in experimental research following approval by
the local animal ethics committee.

Experimental Design

Adult male Sprague Dawley rats (n = 18; 300–350 g) were fed
and watered ad libitum throughout. Animals were randomized to
receive either chronic alcohol exposure, acute alcohol exposure, or
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no treatment, and then subject to closed cranial trauma using the
lateral fluid percussion injury method (19,20). Following injury,
animals were monitored for changes in magnesium using phospho-
rus MRS over a 3-h posttraumatic interval.

Acute Alcohol Exposure

Acute effects of alcohol were examined after administration of
three equal volume intraperitoneal injections of 50% ethanol ⁄water
aliquots totaling 3 g ⁄ kg over 20 min (n = 6). Previous studies have
demonstrated that this dosage results in a blood alcohol level of
approximately 300 g ⁄ 100 mL (21). In the present study, blood
alcohol concentrations in a subgroup of animals (n = 3) were mea-
sured at 350 € 16 mg ⁄dL within 15 min of the final injection.

Chronic Alcohol Exposure

Chronic alcohol exposure was induced by the vapor inhalation
method (22) as used Previously in our laboratory (18). Briefly, rats
(n = 6) were housed in clear Plexiglas cages connected by tubing
to a conical flask containing an alcohol ⁄ water mixture. Air was
bubbled through the mixture to the cages over a period of 30 days,
with the alcohol concentration in the mixture increasing from 50%
for the first 7 days, to 75% for the next 14 days, and finally to
90% for the remaining 9 days. Typically, blood alcohol concentra-
tion in these animals was between 150 and 200 mg ⁄ dL at the end
of the 30-day exposure. Throughout the exposure period, rats were
supplied with food and water ad libitum.

Closed Cranial Trauma

Closed cranial trauma was induced using the lateral fluid percus-
sion injury model as described in detail elsewhere (19,20). Briefly,
animals were anesthetized with 60 mg ⁄ kg intraperitoneal sodium
pentobarbital and a femoral venous catheter inserted for continuous
infusion of anesthetic (sodium pentobarbital; 8 mg ⁄ kg ⁄ h). The ani-
mals’ core temperatures were monitored and maintained at
37.5 € 0.5�C using a thermostatically heating pad. A sagittal inci-
sion (2 cm) was made on the dorsal scalp of the head, and the tem-
poral muscles were reflected before a 5 mm in diameter
craniectomy was trephined into the skull centered 3 mm right of
the sagittal suture and midway between the bregma and lambda.

The dura was kept intact at the opening and a female Leur-lock
connection (BD, Sydney NSW, Australia) was secured into the cra-
niectomy with cyanoacrylate adhesive. Once fixed, the animals
were placed in a prone position onto a foam block and the Leur-
lock connection was filled with isotonic saline. The animals were
then attached to the fluid percussion injury device (19) via the
Leur-lock connection and moderate trauma induced with a force of
2.6–2.8 atmospheres. After injury, animals were disconnected from
the device and manually resuscitated if required until stable respira-
tion had resumed (<5 min). At that time, the Leur-lock connection
was removed from the skull.

Phosphorus MRS

All animals (n = 18) were monitored by phosphorus MRS prior
to and for 3 h following induction of closed cranial trauma. A
9 · 5 mm single tuned surface coil was placed centrally over the
craniectomy site and phosphorus MRS spectra were then acquired
using an Oxford Instruments 7.0 tesla horizontal bore magnet
(Abingdon Oxon, UK) interfaced with a Varian spectrometer con-
sole (Agilent Technologies, Santa Clara CA) as previously
described (23,24). Acquisition parameters were such that the 90�
pulse was centered at a cortical depth of 2 mm, spectral width was
6000 Hz, and repetition rate was 0.7 sec. Peak chemical shifts and
integrals were determined using the Varian computer software after
applying a routine convolution difference (20 ⁄ 500 Hz) procedure to
each acquired spectrum.

Free magnesium concentration was determined from the chemi-
cal shift difference between the a and b peaks of ATP as previ-
ously described (14,23) using the equation:

½Mgf � ¼ Kd
ð10:82� da�bÞ
ðda�b � 8:35Þ

where da)b is the chemical shift difference between the a and b
peaks of ATP. The Kd for MgATP was initially assumed to be
50 lM at pH 7.2 and 0.15 M ionic.

Data Analysis

All data are expressed as mean € standard error. Significance
was determined using repeated measures analysis of variance
(ANOVA) followed by Bonferroni correction. A p-value of <0.05
was considered significant.

Results

Illustrative Case

A 39-year-old man was observed by a number of individuals to
be intoxicated at a party. He was involved in a fight during which
he was observed to have his head hit against furniture and a tiled
verandah. His assailant also had grabbed him around the neck dur-
ing the struggle. He was subsequently noted to be not breathing
and attempted resuscitation by ambulance personnel was unsuccess-
ful. At autopsy, there was a 35-mm laceration of the posterior occi-
put with no underlying skull fractures. Multiple minor bruises and
abrasions elsewhere were compatible with the history but were not
medically significant. Layer dissection of the neck do not reveal
any injuries and there were no facial or conjunctival petechiae to
implicate strangulation. Neuropathological evaluation showed minor
patchy subarachnoid hemorrhage with small cerebral contusions
that were considered by the neuropathologist to be insufficient to

FIG. 1—Changes in brain free magnesium concentration in the rat brain
following acute or chronic (30 day) alcohol exposure and subsequent induc-
tion of moderate blunt cranial trauma (2.6–2.8 atmospheres by lateral fluid
percussion injury). Data are mean € SEM. **p < 0.01 versus no alcohol
controls; ***p < 0.001 versus no alcohol controls.
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account for death. There were no underlying organic diseases pres-
ent that could have caused or contributed to death. Toxicological
studies showed a blood alcohol level of 0.2%, with therapeutic
levels of diazepam and nordiazepam and low levels of tetrahy-
drocannabinol. Death was, therefore, attributed to blunt cranial
trauma associated with an elevated level of blood alcohol. It is
recognized that the other drugs that were present may also have
played a role in central nervous system depression.

Animal Study

Prior to injury, brain magnesium was 0.54 € 0.2 mM in
untreated animals, 0.44 € 0.02 mM in acute alcohol-treated animals
at 90 min postadministration, and 0.27 € 0.02 mM in chronic alco-
hol-treated animals. Both alcohol-treated groups had significantly
lower magnesium values than untreated controls (p < 0.01). These
results are consistent with previously published values (18,25,26).
After trauma in untreated animals, magnesium gradually declined
to 0.31 € 0.1 mM over the following 3 h. Following acute alcohol
treatment, there was a rapid decline of magnesium to a minimum
value of 0.22 € 0.01 mM by 1 h after trauma, which was signifi-
cantly less than that observed at the same timepoint in untreated
controls (p < 0.001). There was also no significant change from
this value over the ensuing 2 h. In chronic alcohol-treated rats,
magnesium decreased to 0.20 € 0.02 mM in the first hour, and
thereafter, did not change significantly from this value. The magne-
sium levels in the chronic alcohol-treated rats were significantly
less than in alcohol-free, injured controls (p < 0.001) (Fig. 1).

Discussion

The reported case demonstrates a situation where death
occurred following a witnessed closed head injury with relatively
unimpressive findings on formal neuropathological examination.
Lethal mechanisms were, therefore, considered to have involved
the synergistic interaction of elevated alcohol levels with blunt
cranial trauma, as studies have suggested that deaths following
blunt cranial trauma in individuals affected by moderate to severe
alcohol intoxication may be owing to alcohol augmentation of the
effects of concussive brain injury (27). Specifically, these authors
reported that individuals intoxicated (with blood ethanol levels
ranging from 220 to 330 mg ⁄dL) died after blunt trauma to the
face, despite the fact that the injuries were predominantly soft tis-
sue in nature with no skull fractures, intracranial bleeding, or de-
tectible injury to the brain. While the underlying process was
unclear, they suggested that resultant posttraumatic apnea was the
mechanism of death. Certainly, posttraumatic apnea in brain-
injured animals has been reported to be significantly longer if ani-
mals are intoxicated (28). Moreover, dilation of pial arterioles in
response to hypoxia and hypercapnia is significantly reduced in
the presence of alcohol (29) and hypoxia and low doses of alco-
hol when present together, despite having minimal effects on their
own, can act synergistically to produce a significant degree of
neuronal injury (30).

In the current study, we have demonstrated that alcohol can also
have a deleterious effect on ion metabolism in the brain after blunt
cranial trauma, specifically that of magnesium homeostasis. Alcohol
exposure caused a depletion of magnesium prior to the induction of
blunt cranial trauma, while the trauma itself exacerbated the degree
and rate of magnesium decline such that it was significantly greater
than in animals not previously exposed to alcohol. Previous studies
have shown that decline in magnesium levels after brain injury is
associated with the development of neurological deficits (26,31,32)

and the fall in levels in untreated animals after trauma to
0.31 € 0.1 mM over the ensuing 3 h would be in keeping with the
development of such deficits (12,26). Moreover, magnesium deple-
tion induced prior to brain injury exacerbates neuronal cell death
and the development of neurological deficits (15,33,34), with atten-
uation of the decline reducing neuronal cell death and improving
neurological outcome (35–37). We have shown that alcohol not
only causes preinjury depletion of magnesium but also exacerbates
the rate and degree of the decline in magnesium levels after
trauma. This combination could predispose the brain to a worse
outcome, given the adverse effect that magnesium decline could
have on a number of cellular processes. For example, a reduction
in magnesium levels would facilitate the activity of the N-methyl-
d-aspartate channels thus upregulating glutamate-induced excitotox-
icity after trauma (38). Although it has been postulated that this
effect may relate to alcohol dosage (4), a similar effect has been
observed with barbiturates (29). The decline would also have
adverse effects on all energy producing and consuming reactions
given the essential role magnesium plays in these processes. Thus,
bioenergetic state and the ability of the cell to recover from injury
would be severely compromised (13). Indeed, reductions in bioen-
ergetic state as a result of magnesium depletion have been associ-
ated with increased incidence of cerebrospasm and stroke (39) as
well as an increased mortality from head injury and stroke (34).
The decline in magnesium levels would also inhibit cellular ion
homeostasis, especially that of sodium, potassium, and calcium,
given that they all require the activity of magnesium-dependent
ATPase. A decline in Na+ ⁄ K+ ATPase activity in particular would
promote posttraumatic edema formation (40), which in itself has
also been associated with repeated alcohol exposure (41). Whether
reduced magnesium concentration together with alcohol exposure
act synergistically to promote edema formation is currently unknown.
Finally, membrane structure itself may be adversely affected by
reduced levels of magnesium (42), including a disruption of blood-
brain barrier permeability with consequent neuroinflammation (43).

Our findings demonstrate both an alcohol-induced preinjury
depletion of magnesium and an enhanced decline in magnesium
levels after brain injury with alcohol exposure. Both of these fac-
tors could predispose the injured brain toward a worse outcome
than might occur with blunt trauma in isolation. It may be that the
adverse effects that elevated alcohol levels have on outcome fol-
lowing blunt head trauma are initiated by a more complex cascade
of events involving an interplay of both cellular and hemodynamic
processes.
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